Abstract
In the present paper the linear theory of thermoelasticity for isotropic and homogeneous solids with macro-, meso- and microporosity is considered. In this theory the independent variables are the displacement vector field, the changes of the volume fractions of pore networks and the variation of temperature. The fundamental solution of the system of steady vibrations equations is constructed explicitly by means of elementary functions. The basic internal and external boundary value problems (BVPs) are formulated and the uniqueness theorems of these problems are proved. The basic properties of the surface (single-layer and double-layer) and volume potentials are established and finally, the existence theorems for regular (classical) solutions of the internal and external BVPs of steady vibrations are proved by using the potential method (boundary integral equation method) and the theory of singular integral equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.