Abstract

Background. Diabetic microvascular complications are the main causes of organ dysfunction and even death in diabetic patients. Our previous studies confirmed the beneficial effects of Yiqi Jiedu Huayu Decoction (YJHD) on diabetic cardiomyopathy and diabetic nephropathy. It is not clear whether YJHD can treat multiple diabetic microvascular complications including diabetic retinopathy, diabetic cardiomyopathy, and diabetic nephropathy through some common mechanisms. Methods. TCMSP, SymMap, STITCH, Swiss Target Prediction, and SEA databases were used to collect and analyze the components and targets of YJHD. GeneCards, DrugBank, DisGeNET, OMIM, and GEO databases were used to obtain target genes for diabetic retinopathy, diabetic cardiomyopathy, and diabetic nephropathy. The GO and KEGG enrichment analyses were performed on the DAVID and STRING platforms. Molecular docking was used to evaluate the binding sites and affinities of compounds and target proteins. Animal experiments were designed to validate the network pharmacology results. Results. Through network pharmacological analysis, oxidative stress, inflammatory response, and apoptosis were identified as key pathological phenotypes for the treatment of diabetic microvascular complications with YJHD. In addition, JNK, p38, and ERK1/2 were predicted as key targets of YJHD in regulating the abovementioned pathological phenotypes. The results of animal experiments showed that YJHD could ameliorate retinal pathological changes of diabetes rats. YJHD can inhibit oxidative stress and inflammation in heart and kidney of diabetic rats. Molecular docking showed strong binding between compounds and JNK, p38, and ERK1/2. Berlambine may play a key role in the treatment process and is considered as a promising regulator of MAPK protein family. The regulatory effects of YJHD on JNK, p38, and ERK1/2 were demonstrated in animal experiments. Conclusions. YJHD may play a therapeutic role in diabetic microvascular complications by regulating oxidative stress, inflammatory response, and apoptosis. The regulation of JNK, p38, and ERK1/2 phosphorylation may be the key to its therapeutic effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call