Abstract

BackgroundFlavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids. Earlier research showed that a rifampicin-passaged strain of F. psychrophilum (CSF 259-93B.17) caused no disease in rainbow trout (Oncorhynchus mykiss, Walbaum) while inducing a protective immune response against challenge with the virulent CSF 259–93 strain. We hypothesized that rifampicin passage leads to an accumulation of genomic mutations that, by chance, reduce virulence. To assess the pattern of phenotypic and genotypic changes associated with passage, we examined proteomic, LPS and single-nucleotide polymorphism (SNP) differences for two F. psychrophilum strains (CSF 259–93 and THC 02–90) that were passaged with and without rifampicin selection.ResultsRifampicin resistance was conveyed by expected mutations in rpoB, although affecting different DNA bases depending on the strain. One rifampicin-passaged CSF 259–93 strain (CR) was attenuated (4 % mortality) in challenged fish, but only accumulated eight nonsynonymous SNPs compared to the parent strain. A CSF 259–93 strain passaged without rifampicin (CN) accumulated five nonsynonymous SNPs and was partially attenuated (28 % mortality) compared to the parent strain (54.5 % mortality). In contrast, there were no significant change in fish mortalities among THC 02–90 wild-type and passaged strains, despite numerous SNPs accumulated during passage with (n = 174) and without rifampicin (n = 126). While only three missense SNPs were associated with attenuation, a Ser492Phe rpoB mutation in the CR strain may contribute to further attenuation. All strains except CR retained a gliding motility phenotype. Few proteomic differences were observed by 2D SDS-PAGE and there were no apparent changes in LPS between strains. Comparative methylome analysis of two strains (CR and TR) identified no shared methylation motifs for these two strains.ConclusionMultiple genomic changes arose during passage experiments with rifampicin selection pressure. Consistent with our hypothesis, unique strain-specific mutations were detected for the fully attenuated (CR), partially attenuated (CN) and another fully attenuated strain (B17).Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0518-1) contains supplementary material, which is available to authorized users.

Highlights

  • Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids

  • Our findings demonstrate that the two F. psychrophilum strains passaged with rifampicin harbored from 27.6 % to 33.33 % more single-nucleotide polymorphism (SNP) than the paired strains that were passaged without the antibiotic

  • Passaged THC 02–90 strains, regardless of rifampicin presence in media, revealed considerably more SNPs than the CSF 259–93 strains, and that difference is correlated with the fact that these two strains belong to two genetically divergent lineages [19]

Read more

Summary

Introduction

Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids. Earlier research showed that a rifampicin-passaged strain of F. psychrophilum (CSF 259-93B.17) caused no disease in rainbow trout (Oncorhynchus mykiss, Walbaum) while inducing a protective immune response against challenge with the virulent CSF 259–93 strain. The antibiotic acts by directly blocking elongation of mRNA transcripts and drug resistance is normally conferred by point mutations in rpoB gene that encodes the β-subunit of the RNAP [2,3,4,5], alternative mechanisms of rifampicin resistance have been described [6]. A live-attenuated strain CSF259-93B.17 of F. psychrophilum was developed by passage with rifampicin and infection with this strain induces a protective immune response in rainbow trout (Oncorhynchus mykiss, Walbaum) against challenge with the virulent parent CSF 259–93 strain [13]. Further analysis of the CSF259-93B.17 (B17) strain revealed a point mutation in the rpoB gene and numerous proteomic changes as compared to the parent strain [14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.