Abstract
The heavy blooming of apple trees results in the inefficient usage of energy and nutritional material, and additional expenditure on fruitlet thinning is required to maintain fruit quality. A possible solution for controlling the fruit load on trees is the development of new cultivars that self-eliminate excess fruitlets, thus controlling yield. The aim of our study was to identify biological differences in apple cultivars in terms of blooming intensity and fruitlet load self-regulation. In total, 19 apple cultivars were studied in the years 2015–2017. The dynamics of fruitlet self-elimination, seed development in fruitlets and fruits, photosynthetic parameters, carbohydrates, and plant hormones were evaluated. We established that apple cultivars self-eliminating a small number of fruitlets need a lower number of well-developed seeds in fruit, and their number of leaves and area per fruit on a bearing branch are larger, compared to cultivars, self-eliminating large numbers of fruitlets. A higher carbohydrate amount in the leaves may be related to smaller fruitlet self-elimination. The amount of auxin and a high indole-3-acetic acid/zeatin ratio between leaves of cultivar groups with heavy blooming were higher than in cultivars with moderate blooming. A lower amount of abscisic acid was found in heavy-blooming cultivars during drought stress. All these parameters may be used as markers for the selection of different apple genotypes that self-eliminate fruitlets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.