Abstract
Cold super-Earths that retain their primordial, H–He-dominated atmosphere could have surfaces that are warm enough to host liquid water. This would be due to the collision-induced absorption of infrared light by hydrogen, which increases with pressure. However, the long-term potential for habitability of such planets has not been explored yet. Here we investigate the duration of this potential exotic habitability by simulating planets of different core masses, envelope masses and semi-major axes. We find that terrestrial and super-Earth planets with masses of ~1–10 M⊕ can maintain temperate surface conditions up to 5–8 Gyr at radial distances larger than ~2 au. The required envelope masses are ~10−4 M⊕ (which is 2 orders of magnitude more massive than Earth’s) but can be an order of magnitude smaller (when close-in) or larger (when far out). This result suggests that the concept of planetary habitability should be revisited and made more inclusive with respect to the classical definition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.