Abstract
Overall, there is a great need within sports medicine to ensure that athletes can return from injury in an efficient, yet thorough manner. It is crucial to not avoid necessary difficulties in this process but also to ensure time-efficient rehabilitation. One of the more promising techniques to achieve timely recovery is blood flow restriction (BFR) training. BFR training is a growing and novel development that could be a vital tool to lighten the burden of recovery from injury in athletes. BFR utilizes a pneumatic tourniquet to limit blood flow in specific areas of the body. The use of BFR has been shown to potentially enhance the analgesic effects of exercise-induced hypoalgesia (EIH). By limiting pain, athletes will be less burdened by mobility and loading exercises required for them to effectively return to play. In a field where time away from sports can have massive implications, the need for tools to assist in the acceleration of the rehabilitation process is vital. Much of the work that has already been done in the field has been able to exploit the benefits of EIHand further enhance the body's capabilities through BFR. Studies have compared EIH at low- and high-intensity settings utilizing BFR with both resistance and aerobic exercise. The results of these studies show comparable beta-endorphin levels with high-intensity exercise without BFR and low-intensity exercise with BFR. Low-intensity training with BFR had greater local pain relief, perhaps indicating the promising effects of BFR in enhancing EIH. By reviewing the current literature on this topic, we hope that further progress can be made to better understand the mechanism behind BFR and its ability to enhance EIH. Currently, local metabolites are a major focus for the potential mechanism behind these effects. Mas-related G-protein-coupled receptors (Mrgprs) contribute to local pain pathways via mast cell degranulation. Similarly, chemokine receptor 2/chemokine ligand 2 (CCR2/CCL2) triggers mast cell degranulation and inflammation-induced pain. Finally, pain-reducing effects have been linked to anti-inflammatory IL-10 signaling and anaerobic metabolites via transient receptor potential vanilloid 1 (TRPV1). Through a better understanding of these metabolites and their mechanisms, it is possible to further exploit the use of BFR to not only serve athletes recovering from injury but also apply this information to better serve all patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.