Abstract

AbstractWe derive two-sided bounds for the Newton and Poisson kernels of the W-invariant Dunkl Laplacian in the geometric complex case when the multiplicity $k(\alpha )=1$ i.e., for flat complex symmetric spaces. For the invariant Dunkl–Poisson kernel $P^{W}(x,y)$ , the estimates are $$ \begin{align*} P^{W}(x,y)\asymp \frac{P^{\mathbf{R}^{d}}(x,y)}{\prod_{\alpha> 0 \ }|x-\sigma_{\alpha} y|^{2k(\alpha)}}, \end{align*} $$ where the $\alpha $ ’s are the positive roots of a root system acting in $\mathbf {R}^{d}$ , the $\sigma _{\alpha }$ ’s are the corresponding symmetries and $P^{\mathbf {R}^{d}}$ is the classical Poisson kernel in ${\mathbf {R}^{d}}$ . Analogous bounds are proven for the Newton kernel when $d\ge 3$ .The same estimates are derived in the rank one direct product case $\mathbb {Z}_{2}^{N}$ and conjectured for general W-invariant Dunkl processes.As an application, we get a two-sided bound for the Poisson and Newton kernels of the classical Dyson Brownian motion and of the Brownian motions in any Weyl chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.