Abstract

Pseudomonas fragi is a dominant meat spoilage organism under high-oxygen modified atmosphere packaging (HiOx-MAP). This work investigated the effects of CO2 on P. fragi growth and the related spoilage phenomena of HiOx-MAP beef. Minced beef incubated with P. fragi T1, a strain owning the strongest spoilage potential among isolates, was stored under CO2-enriched HiOx-MAP (TMAP; 50% O2/40% CO2/10% N2) or non-CO2 HiOx-MAP (CMAP; 50% O2/50% N2) at 4°C for 14 days. Compared to CMAP, TMAP maintained sufficient O2 levels to endow beef with higher a*values and meat color stability due to lower P. fragi counts from day 1 (P<0.05). TMAP samples also showed lower (P<0.05) lipase activity and protease activity within 14-days and 6-days than CMAP samples respectively. TMAP delayed the significantly increased pH and total volatile basic nitrogen contents occurred in CMAP beef during storage. Despite TMAP markedly promoted the lipid oxidation associated with higher concentrations of hexanal and 2,3-octanedione than CMAP (P<0.05), TMAP beef retained an acceptable organoleptic odor due to a CO2-inhibition on the microbial-induced 2,3-butanedione and ethyl 2-butenoate formation. This study provided a comprehensive insight into the antibacterial mechanism of CO2 on P. fragi in HiOx-MAP beef.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.