Abstract
In this article, the electrochemical corrosion of full‐area aluminum back‐surface field (Al–BSF) and bifacial passivated emitter and rear cell (PERC) crystalline silicon (c‐Si) solar cells subjected to different potential in sodium chloride (NaCl) solution is systematically investigated. Based on different potential‐induced corrosion, the electrochemical corrosion mechanism of c‐Si solar cells is revealed for the first time. Under zero potential, an important finding is that the silicon beneath silver electrode is corroded and perforated for Al–BSF cells. This phenomenon is attributed to the interaction between hydroxide ions from galvanic corrosion and electrons from silicon corrosion. For bifacial PERC cells, the pyramidal structure of silicon surface beneath the aluminum finger is observed at zero potential, which is similar to the silicon texturing etched in alkaline environment. Additionally, it is found that silicon corrosion is inhibited when positive or negative potential is applied to the back of Al–BSF and bifacial PERC cells. Moreover, it is observed the aluminum suffers from more serious corrosion at positive potential than that at zero or negative potential, which is attributed to synthetical results of galvanic corrosion and electrolytic corrosion. In this work, a new insight on the potential‐induced electrochemical corrosion for c‐Si solar cells is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.