Abstract
Numerous hydrological models with various complexities, strengths, and weaknesses are available. Despite technological development, the association of runoff accuracy with the underlying model's parameters in watersheds with limited data remains elusive. Evaluating the soil moisture impacts at the watershed scale is often a difficult task, but it can be vital to optimally managing water resources. Incorporating pre-storm soil moisture accounting (PSMA) procedures into hydrologic models affects the watershed response to generate runoff from storm rainfall. This study demonstrated the impact of pre-storm and post-storm soil moisture in order to circumvent major obstacles in accurate runoff estimation from watersheds employing the conventional curve number (CN) model. The proposed hydrological lumped model was tested on a data set (1,804 rainfall-runoff events) from 39 watersheds in South Korea. Its superior performance indicates that the reconciliation of pre- and post-storm conceptualization has the potential to be a solution for efficient hydrological predictions and to demonstrate the complex and dynamic nature of tractable hydrological processes. The statistically significant results reveal that the proposed model can more effectively predict runoff from watersheds in the study area than the conventional CN model and its previously proposed modifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.