Abstract

The Geological and Bioregional Assessment Program examines the potential impacts of shale, tight and deep coal gas development on water and the environment. A key part of the project was quantifying the potential for a decline in the water quality of unconfined aquifers due to unintentional chemical release at the soil surface. To assess this hazard, a quantitative analysis of chemical migration pathways was undertaken, which involved the estimation of contaminant attenuation by dilution and dispersion in soil and groundwater. This provided a conservative screening approach to identify areas for further analysis. Attenuation calculations involved one-dimensional advection-dispersion (AD) simulations through the unsaturated zone, and three-dimensional AD solute transport within the surficial aquifers. Dilution factor (DF) relationships for the combined effect of attenuation in the unsaturated and saturated zone were used to construct spatial maps of the potential for impact on aquifer properties after accidental chemical spills. A higher DF (therefore lower consequence of the surface contamination) was associated with deeper unsaturated zones characterized by heavier soils near the surface, and lower ground water velocities due to lower hydraulic conductivity and/or hydraulic gradient in the saturated zone. The framework was applied across the Cooper Basin and Beetaloo Sub-basin and resulted in two types of maps. The first identified areas being more susceptible to contamination if soil remediation does not occur within a 10-year period. The second map shows the spatially variable combined DFs for a ground water receptor, which may be used to develop site-specific management plans and mitigation measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call