Abstract

This study evaluates potential aggregate effects of net-zero energy building (NZEB) implementations on the electrical grid in simulation-based analysis. Many studies have been conducted on how effective NZEB designs can be achieved, however the potential impact of NZEBs have not been explored sufficiently. As significant penetration of NZEBs occurs, the aggregated electricity demand profile of the buildings on the electrical grid would experience dramatic changes. To estimate the impact of NZEBs on the electrical grid, a simulation-based study of an office building with a grid-tied PV power generation system is conducted. This study assumes that net-metering is available for NZEBs such that the excess on-site PV generation can be fed to the electrical grid. The impact of electrical energy storage (EES) within NZEBs on the electrical grid is also considered in this study. Finally, construction weighting factors of the office building type in U.S. climate zones are used to estimate the number of national office buildings. In order to consider the adoption of NZEBs in the future, this study examines scenarios with 20%, 50%, and 100% of the U.S. office building stock are composed of NZEBs. Results show that annual electricity consumption of simulated office buildings in U.S. climate locations includes the range of around 85 kWh/m2-year to 118 kWh/m2-year. Each simulated office building employs around 242 kWp to 387 kWp of maximum power outputs in the installation of on-site PV power systems to enable NZEB balances. On a national scale, the daily on-site PV power generation within NZEBs can cover around 50% to 110% of total daily electricity used in office buildings depending on weather conditions. The peak difference of U.S. electricity demand typically occurs when solar radiation is at its highest. The peak differences from the actual U.S. electricity demand on the representative summer day show 9.8%, 4.9%, and 2.0% at 12 p.m. for 100%, 50%, and 20% of the U.S. NZEB stocks, respectively. Using EES within NZEBs, the peak differences are reduced and shifted from noon to the beginning of the day, including 7.7%, 3.9%, and 1.5% for each percentage U.S. NZEB stock. NZEBs tend to create the significant curtailment of the U.S. electricity demand profile, typically during the middle of the winter day. The percentage differences at a peak point (12 p.m.) are 8.3%, 4.2%, and 1.7% for 100%, 50%, and 20% of the U.S. NZEB stocks, respectively. However, using EES on the representative winter day can flatten curtailed electricity demand curves by shifting the peak difference point to the beginning and the late afternoon of the day. The shifted peak differences show 7.4%, 3.7%, and 1.5% at 9 a.m. for three U.S. NZEB stock scenarios, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call