Abstract

A steady-state subsidence forecast model was developed as a proof of concept to estimate changes in surface elevations of the wetlands and evacuation routes across coastal Louisiana for the years 2015, 2025, 2050, and 2100. Subsidence estimates were derived from an empirical study published by the National Geodetic Survey. Forecasted vertical change was subtracted from current surface elevations. Land and evacuation routes estimated to have surfaces at or below 0 m in elevation, NAVD88, were quantified and classified as vulnerable to inundation hazards. The extent of the coastal zone susceptible to hurricane induced storm surge was also evaluated relative to surge models published by the National Weather Service. The results indicate spatially heterogeneous rates of subsidence that are forecasted to consume nearly 50 % of the existing coastal margin wetlands by 2100. The most significant rate increases are anticipated between 2015 and 2050. Relative to the impact on evacuation routes, subsidence occurring between the 2015 and 2025 forecast years expanded at slower rates when compared to the latter half of the century. Subsidence adjusted storm surge forecasts reveal similar patterns. The methods employed and findings produced demonstrate forecasting capabilities that provide emergency managers and transportation engineers with resources applicable to evacuation modeling, hazard mitigation, environmental sustainability research, costal restoration efforts, and more.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.