Abstract

We used the Abdu Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4.5 (RegCM4.5), to investigate the potential impacts of land cover change of the Sahel–Sahara interface on the West African climate over an interannual timescale from 1990 to 2009. A simulation at 50 km grid spacing is performed with the standard version of the RegCM4.5 model (control run), followed by three vegetation change experiments at the Sahel-Sahara interface (15° N and 20° N): forest, tall grass, and short grass savanna. The impacts of land cover change are assessed by analyzing the difference between the altered runs and the control one in different sub-domains (western Sahel, central Sahel, eastern Sahel, and Guinea). Results show that the presence of forest, tall grass, and short grass savanna at the Sahel–Sahara interface tends to decrease the mean summer surface temperature in the whole domain. Nevertheless, this decrease is more pronounced over the Central Sahel when considering the forest experiment. This temperature decrease is associated with a weakening (strengthening) of the sensible (latent) heat flux in the whole domain. An analysis of the radiation field is performed to better explain the changes noted in the latent heat flux, the sensible heat flux, and the surface temperature. When considering the rainfall signal, the analysis shows that the afforestation options tend to alter the precipitation in the considered sub-domains substantially by increasing it in the whole Sahel region, with strong interannual variability. This rainfall increase is associated with an increase of the atmospheric moisture. Finally, we investigated the impacts of the afforestation options on some features of the rainfall events, and on the atmospheric dynamics during wet and dry years. All afforestation options tend to increase the frequency of the number of rainy days in regions located south of 18° N during both periods. Nevertheless, this increase is stronger over the Central and Eastern Sahel during wet years in the forest case. All afforestation experiments induce an increase (decrease) of the low-levels monsoon flux in the Eastern Sahel (western Sahel) during both periods. At the mid-levels, the three afforestation options tend to move northward and to decrease the intensity of the African Easterly Jet (AEJ) south of 13° N during wet and dry years.The intensity of the AEJ is weaker during the wet period. The vegetation change experiments also affect the Tropical Easterly Jet (TEJ), especially during wet years, by increasing its intensity over the southern Sahel. The analysis of the activity of African Easterly Waves (AEWs) patterns exhibits a decrease of the intensity of these disturbances over the Sahel during both periods. This may be due to the weakening of the meridional temperature contrast between the continent and the Gulf of Guinea due to the Sahel–Sahara surface temperature cooling induced by the afforestation. In summary, this study shows that during both periods, the increase of the atmospheric moisture due to the afforestation is associated with favorable AEJ/TEJ configurations (weaker and northward position of the AEJ; stronger TEJ) which in turn may create a stronger convection and then, an increase in the Sahel rainfall. This Sahel rainfall increase is associated with a strengthening of the intense and heavy rainfall events which may impact diversely local populations.

Highlights

  • The West African rainfall pattern is marked by a strong variability from the interannual timescale to decadal timescales

  • This work aims at assessing the potential impacts of land cover changes on the interannual This work aimsand at surface assessing the potential of land coveron changes on the interannual variability of rainfall temperature, and impacts to investigate changes some precipitation features variability of rainfall and surfaceover temperature, and to simulations investigate done changes some precipitation and on the atmospheric dynamic

  • Results show that all afforestation options tend to decrease significantly the surface temperature during the summer of the RegCM4 model and the altered ones are inter-compared

Read more

Summary

Introduction

The West African rainfall pattern is marked by a strong variability from the interannual timescale to decadal timescales. Since the early work of [3,4], the interannual variability of rainfall over the Sahel has been a recurring topic for populations and of interest to a diversified scientific community as climatologists, atmospheric dynamists, hydrologists, and ecologists. This rainfall variability is critical for many activities, such as water resources monitoring and rain-fed agriculture. [5] found that the majority of the regional climate models (RCMs) are able to better simulate the rainfall variability over the regions of West Africa with a high correlation coefficient compared with observation data. These mechanisms include the sea surface temperature anomalies [11,12,13,14,15], continental surface conditions [16,17], the variability of the African easterly waves [18], and wind dynamics [19,20], in addition to the possible effect of global climate change [21,22]

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.