Abstract

In this contribution, the authors put forward a modelling framework for generic Advanced Driver Assistance Systems (ADAS) based on rolling horizon optimal control and design control algorithms for an Ecological Adaptive Cruise Control (EcoACC) system under this framework. The accelerations of EcoACC vehicles are determined by minimizing some predicted cost, and the optimal control problem is solved using a dynamic programming approach. The proposed algorithm is applied on a single lane ring road to examine the impacts of the EcoACC system employing the Eco-driving strategy comparison with a system employing an Efficient-driving strategy. Simulation results show that the Eco-driving strategy results in smoother vehicle behaviour compared to the driving strategies that only consider travel efficiency (Efficient-driving strategy). At the macroscopic level, the Eco-driving strategy results in a lower speed and lower flow at free traffic conditions, but a higher speed and higher flow at moderate congested conditions compared to the Efficient-driving strategy. From an environment perspective, the Eco-driving strategy results in a lower spatial CO₂ emission rate. However, in the ring-road scenario where the demand is not fixed, the impact of the EcoACC system on total CO₂ emissions is negative at moderate congested conditions, due to the high flow it supports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.