Abstract

Our aim in this work was to study the potential dosimetric effect of prostate edema on the accuracy of conventional pre- and post-implant dosimetry for prostate seed implants using the newly introduced 131Cs seed, whose radioactive decay half-life (approximately 9.7 days) is directly comparable to the average edema resolution half-life (approximately 10 days) observed previously by Waterman et al. for 125I implants [Int. J. Radiat. Oncol. Biol. Phys. 41, 1069-1077 (1998)]. A systematic calculation of the relative dosimetry effect of prostate edema on the 131Cs implant was performed by using an analytic solution obtained previously [Int. J. Radiat. Oncol. Biol. Phys. 47, 1405-1419 (2000)]. It was found that conventional preimplant dosimetry always overestimates the true delivered dose as it ignores the temporary increase of the interseed distance caused by edema. The overestimation for 131Cs implants ranged from 1.2% (for a small edema with a magnitude of 10% and a half-life of 2 days) to approximately 45% (for larger degree edema with a magnitude of 100% and a half-life of 25 days). The magnitude of pre- and post-implant dosimetry error for 131Cs implants was found to be similar to that of 103Pd implants for typical edema characteristics (magnitude < 100%, and half-life <25 days); both of which are worse compared to 125I implants. The preimplant dosimetry error for 131Cs implants cannot be compensated effectively without knowing the edema characteristics before the seed implantation. On the other hand, the error resulted from a conventional post-implant dosimetry can be minimized (to within +/-6%) for 131Cs implants if the post-implant dosimetry is performed at 10+/-2 days post seed implantation. This "optimum" post-implant dosimetry time is shorter than those determined previously for the 103Pd and 125I implants at 16+/-4 days and 6+/-1 weeks, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.