Abstract

A fundamental question in biology is how multicellular organisms can arise from their single-celled precursors. The evolution of multicellularity requires the adoption of new traits in unicellular ancestors that allows the generation of form by, for example, increasing the size and developing new cell types. But what are the genetic, cellular and biochemical bases underlying the evolution of multicellularity? Recent advances in evolutionary developmental biology suggest that the regulation of gene expression by cis-regulatory factors, gene duplication and alternative splicing contribute to phenotypic evolution. These mechanisms enable different degrees of phenotypic divergence and complexity with variation in traits from genomes with similar gene contents. In addition, signaling pathways specific to cell types are developed to guarantee the modulation of cellular and developmental processes matched to the cell types as well as the maintenance of multicellularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.