Abstract

Recently, mixture of different oils at various proportions have been used as feedstock for biodiesel production. The primary aim is to improve fuel properties which are strongly influenced by the fatty acid composition of the individual oil that makes up the feedstock mix. The tropics are renowned for abundant oil-bearing crops of which palm kernel oil (PKO) from palm seed and groundnut oil (GNO) are prominent. This present paper investigated biodiesel production from hybrid oil (HO) of PKO (medium carbon chain and highly saturated oil) and GNO (long carbon chain and highly unsaturated oil) at 50/50 (v/v) blending. The principal fatty acids (FAs) in the HO are oleic (35.62%) and lauric acids (24.23%) with 47.80% of saturated FA and 52.26% of unsaturated FA contents. The chemical conversion of the oil to methyl ester (ME) gave 86.56% yield. Fuel properties of hybrid oil methyl ester (the HOME) were determined in accordance with standard test methods and were found to comply with both ASTM D6751 and EN 14214 standards. The oxidative stability, cetane number and kinematic viscosity (KV) of HOME were observed to be improved when compared with those of GNO methyl ester from single parent oil, which could be accredited to the improved FA composition of the HO. The KV (3.69 mm2/s) of HOME obtained in this paper was remarkably low compared with those reported in literature for most biodiesels. This value suggests better flow, atomization, spray and combustion of this fuel. Conclusively, the binary blend of oils can be a viable option to improve the fuel properties of biodiesel feedstock coupled with reduced cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.