Abstract

Drug-induced liver injury is a common adverse reaction that frequently occurs with chemotherapeutic agents, such as cisplatin (CIS). This study seeks to enhance our understanding of drug actions and their associated adverse effects by examining the toxicity of CIS on rat liver tissue. We aimed to investigate the potential hepatoprotective effects of irbesartan (IRB), an easily accessible angiotensin II receptor blocker, in mitigating CIS-induced hepatotoxicity. Wistar albino rats were divided into four groups. These groups included a control group [saline, per oral (p.o.)] for seven days, and 1 mL saline intraperitoneal [(i.p.) on the fourth day]; a CIS group (1 mL saline for seven days and 7.5 mg/kg CIS i.p. on the fourth day); a CIS + IRB group (IRB: 50 mg/kg p.o. for seven days and 7.5 mg/kg CIS i.p. on the fourth day), and an IRB group (50 mg/kg IRB p.o. for seven days). The effect of IRB on interleukin-1 beta (IL-1β) and caspase 3 levels was evaluated by immunohistochemical analysis, and its effects on mRNA expression levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and immunoglobulin-heavy-chain-binding protein (BiP) were tested by quantitative real-time polymerase chain reaction. IRB administration mitigated CIS-induced liver toxicity by inhibiting endoplasmic reticulum (ER) stress. Specifically, this drug reduced the mRNA expression of ER stress markers, including CHOP and BiP. In addition, IRB treatment decreased oxidative stress, inflammatory responses, and apoptotic markers. These findings suggest that IRB is a promising therapeutic option for preventing CIS-induced liver injury, potentially by modulating ER stress-related pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call