Abstract

Although medical ultrasound offers compelling opportunities to improve therapy in principle, progress in the field has been limited because of an insufficient understanding of the potential genotoxic and cytotoxic effects of ultrasound on biological systems. This paper is mainly focused on an in vitro study of effects with respect to genotoxicity and viability induced by 1- and 3-MHz medical ultrasound in murine fibroblasts (NIH-3T3) at low-intensity exposure (spatial peak temporal average intensity Ita<0.1W/cm2). The NIH-3T3 cells constitute a well-characterized in vitro cell model in which a genotoxic effect can be predicted by means of a reliable and precise murine cytokinesis-block micronucleus assay. A statistically significant increase in the incidence of micronuclei was observed in sonicated 3T3 cells. In particular, the effects were more evident at 1MHz. Moreover, for each frequency investigated, the occurrence of micronuclei was comparatively more frequent with increasing time of exposure. The possible toxicological implications of the medical ultrasound employed herein deal with the existence of a window of exposure parameters (set well below the intensity of ultrasound cavitation) in which some genotoxic effects may occur without significant cytotoxicity. In this respect, they provide new insight toward the correct risk to benefit balancing of ultrasound-based treatments and for designing innovative therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.