Abstract

The objective of this study was to quantify the gains in genetic potential of replacement females that could be achieved by using genomic testing to facilitate selection and culling decisions on commercial dairy farms. Data were simulated for 100 commercial dairy herds, each with 1,850 cows, heifers, and calves. Parameters of the simulation were based on the US Holstein population, and assumed reliabilities of traditional and genomic predictions matched reliabilities of animals that have been genotyped to date. Selection of the top 10, 20, 30, …, 90% of animals within each age group was based on parent averages and predicted transmitting abilities with or without genomic testing of all animals or subsets of animals that had been presorted by traditional predictions. Average gains in lifetime net merit breeding value of selected females due to genomic testing, minus prorated costs of genotyping the animals and their unselected contemporaries, ranged from $28 (top 90% selected) to $259 (top 20% selected) for heifer calves with no pedigrees, $14 (top 90% selected) to $121 (top 10% selected) for heifer calves with known sires, and $7 (top 90% selected) to $87 (top 20% selected) for heifer calves with full pedigrees. In most cases, gains in genetic merit of selected heifer calves far exceeded prorated genotyping costs, and gains were greater for animals with missing or incomplete pedigree information. Gains in genetic merit due to genomic testing were smaller for lactating cows that had phenotypic records, and in many cases, these gains barely exceeded or failed to exceed genotyping costs. Strategies based on selective genotyping of the top, middle, or bottom 50% of animals after presorting by traditional parent averages or predicted transmitting abilities were cost effective, particularly when pedigrees or phenotypes were available and a relatively small proportion of animals were to be selected or culled. Based on these results, it appears that routine genotyping of heifer calves or yearling heifers can be a cost-effective strategy for enhancing the genetic level of replacement females on commercial dairy farms. Increasing the accuracy of predicted breeding values for young females with genomic testing might lead to synergies with other management tools and strategies, such as propagating genetically superior females using advanced reproductive technologies or selling excess females that were generated by the use of sex-enhanced semen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call