Abstract

Native salmonids of western North America are subject to many environmental pressures, most notably the effects of introduced species and environmental degradation. To better understand how native salmonids on the eastern slopes of the Canadian Rocky Mountains may respond to future changes in climate, we applied a process-based approach to hydrologic and stream temperature modelling. This study demonstrates that stream thermal regimes in western Alberta, Canada, may only warm during the summer period, while colder thermal regimes during spring, fall, and winter could result from response to earlier onset of spring freshet. Model results of future climate impacts on hydrology and stream temperature are corroborated by an intercatchment comparison of stream temperature, air temperature, and hydrological conditions. Earlier fry emergence as a result of altered hydrological and thermal regimes may favour native westslope cutthroat trout (Oncorhynchus clarkii lewisii) in isolated headwater streams. Colder winter stream temperatures could result in longer incubation periods for native bull trout (Salvelinus confluentus) and limit threatened westslope cutthroat trout habitat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call