Abstract

Investigating potential forcing mechanisms of terrestrial summer temperature changes from the Asian summer monsoon influenced area is of importance to better understand the climate variability in these densely populated regions. The results of spectral and wavelet analyses of the published chironomid reconstructed mean July temperature data from Tiancai Lake on the SE Tibetan Plateau are presented. The evidence of solar forcing of the summer temperature variability from the site on centennial timescales where key solar periodicities (at 855 ± 40, 465 ± 40, 315 ± 40 and 165 ± 40 year) are revealed. By using a band-pass filter, coherent fluctuations were found in the strength of Asian summer monsoon, Northern Hemisphere high latitude climate and high elevation mid-latitude (26°N) terrestrial temperatures with solar sunspot cycles since about 7.6 ka. The two abrupt cooling events detected from the Tiancai Lake record, centered at ∼9.7 and 3.5 ka were examined respectively. Coupled with the paleoclimate modeling results, the early Holocene event (9.7 ka) is possibly linked to an ocean-atmospheric feedback mechanism whereas the latter event (3.5 ka) may be more directly related to external forcing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.