Abstract
Triticale is a promising crop for agricultural biomass production but breeding has until now mainly focused on grain yield. Here, we evaluated the potential of marker-assisted simultaneous improvement of grain yield and biomass yield. To this end, we employed a large triticale doubled haploid population with 647 individuals derived from four families that were phenotyped for grain yield and biomass yield, as well as thousand-kernel weight, tiller density, and plant height in multi-environment field trials. Employing an association mapping approach, we identified quantitative trait loci (QTL) for all the five traits. The phenotypic correlation between grain yield and biomass yield was low, and we detected only one overlapping QTL suggesting different genetic architectures underlying both traits. Our results indicate that a marker-based selection for either grain yield or biomass yield does not adversely affect the other traits. Furthermore, an improvement of the multiplicative yield traits can to some extent also be achieved by selection for QTL identified for the component traits. Taken together, our results suggest that marker-assisted breeding can assist the establishment of dual-purpose triticale cultivars with high grain and biomass yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.