Abstract
HyperVapotron (HV) elements have been used extensively as high heat flux beam stopping components in nuclear fusion research facilities. These water-cooled heat exchangers use a boiling heat transfer mechanism and so are inherently limited by their critical heat flux (CHF). The use of a nanofluid as the coolant, instead of water, promises to enhance the heat transfer performance of the HV and increase the CHF by a factor of 2 or 3, which would lead to a step-change improvement in the power handling capability. This paper reports on computational and experimental analyses which have indicated mechanisms for the enhanced thermal performance of nanofluids. A molecular dynamics simulation code has been developed which has identified heat transfer augmentation mechanisms that depart from classical thermodynamics associated with the presence of nanoparticles. In addition, an experiment has been conducted which uses particle image velocimetry to measure the flow field in a full-scale HV. Past studies have yielded qualitative experimental results, but the measurements reported here provide quantitative data to aid the understanding of the initial flow field inside the HV (i.e., before a heat flux is applied). Further, the experiment is conducted using both water and Al2O3–water nanofluid as the flow medium. Thus, these velocity measurements offer a first indication for potentially enhanced heat transfer in HV devices when nanofluids are used as the coolant. The improved understanding of the HV flow regime and the cooling advantage of nanofluids could assist the design of advanced high heat flux components for future fusion machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.