Abstract

The volume of heavy oil and bitumen in Alberta, Canada is estimated to be about 1.7 trillion barrels. The majority of the produced heavy oil and bitumen in Alberta is converted in surface upgraders to synthetic crude oil, a crude oil with API gravity typically between 31 and 33° API, which in turn can be converted to fuel, lubricant, and petrochemical products in standard refineries. To upgrade bitumen requires hydrogen. In current practice, much of this hydrogen is generated from catalytic steam reforming of methane together with the water–gas shift reaction. This means that heavy oil and bitumen upgrading, as is currently done, requires large amounts of natural gas to generate hydrogen. The potential for in situ generation of hydrogen by gasification of bitumen reservoirs offers an attractive alternative which can also have both economic and environmental benefits. For example, hydrogen generated from bitumen gasification can also be used for in situ upgrading as well as feedstock for ammonia and other chemicals. The water–gas shift reaction also generates carbon dioxide which could be potentially sequestered in an in situ gasification process so that emissions to the atmosphere are reduced. This technology provides a potential clean method to produce fuel and feedstock material from bitumen, a relatively “dirty” fuel and feedstock oil, in addition to more energy efficient ways of extracting in situ heavy oils. However, to design in situ bitumen gasification processes requires a reaction model that provides a reasonable representation of the gasification reactions. Here, a new kinetic model is developed to examine the potential for hydrogen generation from Athabasca bitumen. The kinetic model consists of thermal cracking, oxidation/combustion, hydrogen generation and hydrogen consumption reactions. A comparison of the simulation results and experimental data from the published literature reveal that the new model can predict hydrogen generation from gasification of methane, Athabasca bitumen, and coke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call