Abstract

Traces of mechanical wear appear on co-working surfaces in the operation of precision fluid bearings. This should not be the case, since fluid friction and uninterrupted oil film should be present in a friction pair, which is a concept that this paper attempts to outline. The way friction forces, resistance, and oil film vary as unit pressure rises linearly is discussed. Three stages of the variations are distinguished. At the first stage, the oil film thickness and force of friction remain steady while the resistance declines. Stage two is temporary: Triboelectrical phenomena already escalate considerably and begin to decide effects of the friction process while a lubricant loses rheological properties of the Newtonian fluid. Hydrodynamic friction continues at the third stage, yet the triboelectrical effects are decided by stabilised triboelectrical phenomena. The third range can be identified as boundary friction where the layer separating surfaces is thicker than in the area of Newtonian rheology. This is very good in respect to wear, but higher-energy (not electrically neutral) particles cause increases in friction resistances. This range seems to exhibit a very high potential for being controlled with an adequate selection of oil based additions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call