Abstract

In this paper, an open absorption refrigeration system is proposed to recover part of the waste compression heat while producing cooling capacity to further cool the compressed air itself. The self-utilization of the compression waste heat can significantly reduce the energy consumption of air compression, and hence increase the energy efficiency of the cryogenic air separation unit. To illuminate the energy distribution and energy conversion principle of the open absorption refrigerator-assisted air compression section, a thermodynamic model is built and the simulation work conducted based on a practical triple-stage air compression section of a middle-scale cryogenic air separation unit. Our results indicate that the energy saving ratio is mainly constrained by the distribution of the cooling load of compressed air, which corresponds to the heat load of the generator and cooling capacity of the evaporator in the open absorption refrigerator. The energy saving ratio ranges from 0.52–8.05%, corresponding to the temperature range of 5–30 °C and humidity range of 0.002–0.010 kg/kg. It is also estimated, based on the economic analysis, that the payback period of the open absorption refrigeration system is less than one year, and the net project revenue during its life cycle reaches USD 5.7 M, thus showing an attractive economic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.