Abstract

Communities of insect herbivores are thought to be structured mainly by indirect processes mediated by shared natural enemies, such as apparent competition. In host-parasitoid interaction networks, overlap in natural enemy communities between any pair of host species depends on the realized niches of parasitoids, which ultimately depend on the foraging decisions of individuals. Optimal foraging theory predicts that egg-limited parasitoid females should reject small hosts in favour of future opportunities to oviposit in larger hosts, while time-limited parasitoids are expected to optimize oviposition rate regardless of host size. The degree to which parasitoids are time- or egg-limited depends in part on weather conditions, as this determines the proportion of an individual's lifespan that is available to foraging. Using a 10-year time series of monthly quantitative host-parasitoid webs, we present evidence for host-size-based electivity and sex allocation in the common secondary parasitoid Asaphes vulgaris. We argue that this electivity leads to body-size-dependent asymmetry in apparent competition among hosts and we discuss how changing weather patterns, as a result of climate change, may impact foraging behaviour and thereby the size-structure and dynamics of host-parasitoid indirect interaction networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.