Abstract

Effective pest management strategies for a targeted pest species must rely on accurate, reliable and reproducible estimates of population dynamics. Importance of such approaches is even more conspicuous when assessing pest’s potential to utilize other stored products. Using an experimental evolution approach, we have focused our attention on a common bean pest, the seed beetle (Acanthoscelides obtectus). We looked into the potential to invade and sustain population growth on two suboptimal host plants (chickpeas and mung beans). Such an approach simulates steps of the host-shift process in storages. By analyzing population dynamics during initial encountering with a new host plant, we detected a population drop for both novel hosts. However, transgenerational development in a novel environment resulted in a constant population growth in chickpeas, but not in mung bean populations. Reversal of chickpea selected populations to original host plant has led to a severe decrease in population parameters due to low viability of immatures, while the opposite trend was detected in mung bean populations. This paper highlights the importance of good practice in estimating population dynamics for economically important species. With special emphasis on storage pest species, we discuss how this approach can be useful for estimating invading potential of pest insects.

Highlights

  • More than 1600 insect species menace stored product commodities during their production, transportation, processing, storage and marketing [1]

  • Using an experimental evolution approach, we have focused our attention on a common bean pest, the seed beetle (Acanthoscelides obtectus)

  • We looked into the potential to invade and sustain population growth on two suboptimal host plants

Read more

Summary

Introduction

More than 1600 insect species menace stored product commodities during their production, transportation, processing, storage and marketing [1]. Species from this ever-growing list produce severe challenges to food production and storage worldwide, while developing regions are especially vulnerable [2]. Some studies have suggested that the beans’ annual yields can suffer a loss of 40% if infected storages are untreated [3,4]. These losses go far above the recommended economic threshold of 4% [5,6]. The total cost could be even higher if damage to all other legume species that

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.