Abstract

Research in Potential Fishing Zone (PFZ) has undergone many developments, including parameter suitability selection. The thermal front has become the primary parameter input of ZPPI (LAPAN's PFZ). The accuracy of the thermal front parameter to predict PFZ cannot be known with certainty because of the radius between ZPPI with fishing areas, so it is necessary to develop parameters to support the thermal front. The thermal front described the meeting area of two water masses with different temperature characteristics associated with high nutrients (chlorophyll-a) and indicate an upwelling's appearance. This study aims to determine ZPPI by approaching the thermal front and mesotrophic area's matching area (chlorophyll-a concentration 0.2-0.5 mg/m3). Chlorophyll-a and sea surface temperature data for thermal fronts detection are derived from Aqua MODIS satellite on Google Earth Engine (GEE). The matching area's approach between the thermal front and mesotrophic area is used in the analysis of ZPPI. The results show thermal front and mesotrophic area on WPPNRI 715 have a variation seasonally where December appears like the peak event. The two parameters are distributed evenly from coastal areas to high seas. This method generates thermal fronts that have more than 60.3% matching with the mesotrophic area where the amount is acceptable due to has more than 50% amount of moderate ZPPI. The accuracy improvement in ZPPI both on the coast and open sea can be determined through this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call