Abstract

Inversion of large-scale potential-field anomalies, aimed at determining density or magnetization, is usually made in the Fourier domain. The commonly adopted geometry is based on a layer of constant thickness, characterized by a bottom surface at a fixed distance from the top surface. We propose a new method to overcome this limiting geometry, by inverting in the usual iterating scheme using top and bottom surfaces of differing, but known shapes. Randomly generated synthetic models will be analyzed, and finally performance of this method will be tested on real gravity data describing the isostatic residual anomaly of the Southern Tyrrhenian Sea in Italy. The final result is a density model that shows the distribution of the oceanic crust in this region, which is delimited by known structural elements and appears strongly correlated with the oceanized abyssal basins of Vavilov and Marsili.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call