Abstract
Potential sources of error in the use of FTIR to measure the level of oxidation in ultrahigh molecular weight polyethylene acetabular cups were evaluated using cups from a hip simulator wear study with and without artificial aging, as well as cups retrieved from clinically failed hip prostheses. Oxidation was measured as a function of depth below the bearing surface using transmission FTIR on microtomed sections of the cups. To account for the variation of the thickness of the microtomed sections, oxidation was plotted as the ratio of the absorbance of the carbonyl groups to the absorbance of a reference band at 2022 cm-1. Overnight soaking in hexane reduced the apparent levels of oxidation, presumably due to the extraction of absorbed contaminants. In cups with low to moderate levels of oxidation, the reference absorption was relatively independent of the level of oxidation and was linearly proportional to the thickness of the specimens, providing reproducible oxidation ratios. However, the scatter in the reference absorption and in the apparent oxidation ratio increased with increasing levels of oxidation and was greatest for the thickest (400 microm) microtomed sections. The profiles of the oxidation ratios for a given specimen that were plotted by the present study method could be numerically adjusted to coincide with the ratios plotted using the methods of two previous investigators, providing conversion factors that are useful for comparing results among the studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of biomedical materials research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.