Abstract

This paper aims to stimulate research and to focus the attention of deterministic radiation transport code developers and users on further methodologies in transport analysis that some recent additions to the code package BOT3P potentially make possible in structured Cartesian or cylindrical mesh grids simulating complex geometries. In particular, BOT3P Version 5.0 can compute the possible area/volume error of material zones due to the stair-cased geometrical representation and automatically correct material densities in order to conserve masses, as described in a previous BOT3P paper published in Volume 154, Number 2 of Nuclear Science and Engineering to which the present one is logically and strictly related. When calculating areas and volumes refinements or when reducing the problem sizes of a voxelized geometry, typical of medical applications, BOT3P generates binary files that store also a fine submesh grid for each coarse cell at material interfaces. These files were originally conceived only for density correction computation and plotting purposes. However, the availability of such cell data intuitively suggests multistep transport analysis approaches that may combine detailed solutions at material interfaces with acceptable problem sizes and computational times. Reaching this appealing target could let deterministic codes based on structured mesh grid successfully deal with any challenging geometry problem. That might be particularly useful in medical and reactor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.