Abstract

We investigate the formation of nano-sized hillocks on the (111) surface of CaF2 single crystals by impact of slow highly charged ions. Atomic force microscopy reveals a surprisingly sharp and well-defined threshold of potential energy carried into the collision of about 14keV for hillock formation. Estimates of the energy density deposited suggest that the threshold is linked to a solid–liquid phase transition (“melting”) on the nanoscale. With increasing potential energy, both the basal diameter and the height of the hillocks increase. The present results reveal a remarkable similarity between the present predominantly potential energy driven process and track formation by the thermal spike of swift (∼GeV) heavy ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.