Abstract

The nine-dimensional potential energy surface for proton tunneling in the nonrigid C2H+3 cation was constructed from quantum-chemical data [MP4SDQ(T)/6-311++G(3df,3pd)] on the equilibrium geometry, energy, frequencies, and eigenvectors of the normal vibrations at the stationary points and transition states using the theory of isodynamic symmetry groups along the tunneling path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.