Abstract

The potential energy surface for the gas-phase CH4+OH→CH3+H2O reaction and its deuterated analogs was constructed with suitable functional forms to represent vibrational modes, and was calibrated by using the experimental thermal rate constants and kinetic isotope effects. On this surface, the forward and reverse thermal rate constants were calculated using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200–2000 K, finding reasonable agreement with the available experimental data. We also calculated six sets of kinetic isotope effects and, in general, the theoretical results underestimate the few available experiments, with exception of the C-13 isotopic effect values which are overestimated. Finally, this surface is also used to analyze dynamical features, such as reaction-path curvature and coupling between the reaction coordinate and vibrational modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.