Abstract

Of the many candidates employed for understanding the erosion of critical Extreme Ultraviolet Lithography (EUVL) components, potential energy damage remains relatively uninvestigated. Unlike the familiar kinetic energy sputtering, which is a consequence of the momentum transferred by an ion to atoms in the target, potential energy sputtering occurs when an ion rapidly collects charge from the target as it neutralizes. Since the neutralization energy of a singly charged ion is typically on the order of 10 eV, potential energy effects are generally neglected for low charge state ions, and hence the bulk of the sputtering literature. As an ion's charge state is increased, the potential energy (PE) increases rapidly, e.g. PE(Xe{sup 1+})= 11 eV, PE(Xe{sup 10+}) = 810 eV, PE(Xe{sup 20+}) = 4.6 keV, etc. By comparison, the binding energy of a single atom on a surface is typically about 5 eV, so even relatively inefficient energy transfer mechanisms can lead to large quantities of material being removed, e.g. 25% efficiency for Xe{sup 10+} corresponds to {approx} 40 atoms/ion. By comparison, singly charged xenon ions with {approx} 20 keV of kinetic energy sputter only about 5 atoms/ion at normal incidence, and less than 1 atom/ion at typical EUV source energies.more » EUV light sources are optimized for producing approximately 10{sup 16} xenon ions per shot with an average charge state of q=10 in the core plasma. At operational rates of {approx}10 kHz, the number of ions produced per second becomes a whopping 10{sup 20}. Even if only one in a billion ions reaches the collector, erosion rates could reach {approx}10{sup 12} atoms per second, severely reducing the collector lifetime (for an average yield of 10 atoms/ion). In addition, efforts to reduce contamination effects may contribute to reduced neutralization and even larger potential energy damages rates (discussed further below). In order to provide accurate estimates for collector lifetimes and to develop mitigation schemes, NIST is working to understand and quantify potential energy damage mechanisms on materials relevant to EUVL. Accurate potential energy damage rates can then be used for projecting component lifetimes as source plasma conditions are modified and characterized. This chapter will serve to provide an introduction and some background to the physics of highly charged ions and some of the relevant experimental work in the literature. This chapter will first provide a brief background and an overview of the interaction of highly charged ions (HCIs) with solids as it is currently understood. Secondly, it will present current data from screen test measurements performed to isolate and evaluate the effects of potential energy damage on critical EUVL materials. We will then speculate on the implications of work to date and the outlook for EUVL development and, finally, summarize.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call