Abstract
In the present study, thermodynamic properties of coarse-grained protein models have been studied by an extended ensemble method. Two types of protein model were analyzed; one is categorized into a fast folder and the other into a slow folder. Both models exhibit the following thermodynamic transitions: the collapse transition between random coil states and spatially compact, but non-native states and the folding transition between the collapsed states and the folded native states. Caloric curve for the fast folder shows strong statistical ensemble dependence, while almost no ensemble dependence is found for the slow folder. Microcanonical caloric curve for the fast folder exhibits S-shaped temperature dependence on the internal energy around the collapse transition which is reminiscent of the van der Waals loop observed for the first order transition; at the transition temperature, the collapsed and random coil states coexist dynamically. The corresponding microcanonical heat capacity is found to have negative region around the transition. This kind of exotic behaviors could be utilized to distinguish fast folding proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.