Abstract

The pulsed-field-ionization zero-kinetic-energy photoelectron spectrum of Xe(2) has been measured between 90 000 and 109 000 cm(-1) following single-photon excitation from the ground neutral state. Transitions to five of the six low-lying electronic states of Xe(2) (+) could be observed. Whereas extensive vibrational progressions were observed for the X0(g) (+)-->I(1/2u), I(3/2g), and II(1/2u) photoelectron transitions, only the lowest vibrational levels of the I(3/2u) and II(1/2g) states could be detected. Unambiguous assignments of the vibrational quantum numbers were derived from the analysis of the isotopic shifts of the vibrational bands and of the intensity distribution and from the modeling of the potential energy curves. Analytical potential energy curves of spectroscopic accuracy (i.e., approximately 1 meV) were determined for all six low-lying electronic states using a global model, which includes the first (charge-induced dipole, proportional to 1/R(4)) member of the long-range interaction series and treats the spin-orbit interaction explicitly. The assumption of an R-independent spin-orbit coupling constant was tested and found to be an excellent approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.