Abstract

Benzoic acid (BA) is a model system for studying proton transfer (PT) reactions. The properties of solid BA subject to high pressure (exceeding 1 kbar = 0.1 GPa) are of particular interest due to the possibility of compression-tuning of the PT barrier. Here we present simulations aimed at evaluating the value of this barrier in solid BA in the 1 atm – 15 GPa pressure range. We find that pressure-induced shortening of O⋯O contacts within the BA dimers leads to a decrease in the PT barrier, and subsequent symmetrization of the hydrogen bond. However, this effect is obtained only after taking into account zero-point energy (ZPE) differences between BA tautomers and the transition state. The obtained results shed light on previous experiments on compressed benzoic acid, and indicate that a common scaling behavior with respect to the O⋯O distance might be applicable for hydrogen-bond symmetrization in both organic and inorganic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.