Abstract
AbstractHydrophobic nano‐fumed silica (NFS) was incorporated in polyvinylidene fluoride (PVDF) hollow fiber (HF) membrane for improving direct contact membrane distillation (DCMD) performance. The NFS/PVDF mixed matrix hollow fiber membrane was fabricated by the phase inversion process. The potential effects of increasing the percentage of NFS additive (0–6 wt.%) in the dope solution on the hollow fiber membrane characteristics such as viscosity, membrane morphology, porosity, hydrophobicity, Fourier transformed infrared spectroscopy, and permeability were investigated. The performance outcomes showed that the dope solution incorporated with 1.5 wt.% NFS exhibited the most promising HF membrane for membrane distillation (MD). The optimal HF membrane demonstrated the highest flux through shorter and narrower finger‐like structure formation and targeted high porosity. The addition of NFS particle content in the dope solutions enhanced the hydrophobicity of the fabricated membranes while slightly decreasing the porosity due to increasing the viscosity of the dope solution. With a steady flux of 9.25 kg/m2 h compared with the neat membrane at 70°C/20°C of feed/permeate temperatures, 8 h operation, and above 99.9% salt rejection, this PVDF/NFS mixed matrix hollow fiber membrane could be of excellent potential and sustainability in desalination process through DCMD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.