Abstract

Geraniol (GNL), a natural monoterpene, is found in many essential oils of fruits, vegetables, and herbs, including lavender, citronella, lemongrass, and other medicinal and aromatic plants. GNL is commonly used by the cosmetic and food industries and has shown a wide spectrum of pharmacological activities including anti-inflammatory, anticancer, antimicrobial, antioxidant, and neuroprotective activities. It represents a potential anti-inflammatory agent and a promising cancer chemopreventive agent, as it has been found to be effective against a broad range of cancers, including colon, prostate, breast, lung, skin, kidney, liver, and pancreatic cancer. Moreover, GNL scavenges free radicals and preserves the activity of antioxidant enzymes. In addition, GNL induces apoptosis and cell cycle arrest, modulates multiple molecular targets, including p53 and STAT3, activates caspases, and modulates inflammation via transcriptional regulation. In the present study, different modes of action are described for GNL's activity against cancer and inflammatory diseases. This compound protects various antioxidant enzymes, such as catalase, glutathione-S-transferase, and glutathione peroxidase. Experiments using allergic encephalomyelitis, diabetes, asthma, and carcinogenesis models showed that GNL treatment had beneficial effects with low toxicity. GNL has been shown to be effective in animal models and tumor cell lines, but there have not been any clinical studies carried out for it. The aim of the present review is to provide updated data on the potential effects of GNL on cancer and inflammation, and to enhance our understanding of molecular targets, involved pathways, and the possible use of GNL for clinical studies and therapeutic purposes in the treatment of cancer and inflammation-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call