Abstract

AbstractThe objective of this research was to evaluate if cavitation events generated during sonication (20 kHz, 216 μm amplitude, 10 s) are responsible for changes in physical properties of a fat with low levels of saturated fatty acids and if these changes are maintained during storage. The fat was crystallized at 24 and 34 °C and stored at 25 °C for up to 24 weeks. An increase in solid fat content and melting enthalpy was observed for sonicated samples crystallized at 34 °C and an increase in elasticity was observed for sonicated samples crystallized at 24 °C (P < 0.05). Hardness increased in sonicated samples crystallized at 24 and 34 °C (P < 0.05) after 60 min of crystallization and after 24 weeks storage. Elasticity of non‐sonicated samples crystallized at 24 °C decreased (P < 0.05) after storage at 25 °C for 48 h while it remained constant in sonicated samples. Sonicated samples had more, and smaller crystals compared to the non‐sonicated ones. No significant change was observed in physical properties of sonicated samples crystallized at 24 °C and 34 °C during the 24 weeks of storage. Sonication at 24 °C was less efficient at changing the physical properties of the fat compared to 34 °C; however, the number of subharmonic components generated during sonication at these two temperatures was not affected by crystallization temperature. These results suggest that changes in physical properties are associated with secondary effects of sonication such as bubble streamers rather than changes in cluster dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call