Abstract

This review was initiated by the COST action CA15114 AMICI “Anti-Microbial Coating Innovations to prevent infectious diseases,” where one important aspect is to analyze ecotoxicological impacts of antimicrobial coatings (AMCs) to ensure their sustainable use. Scopus database was used to collect scientific literature on the types and uses of AMCs, while market reports were used to collect data on production volumes. Special attention was paid on data obtained for the release of the most prevalent ingredients of AMCs into the aqueous phase that was used as the proxy for their possible ecotoxicological effects. Based on the critical analysis of 2,720 papers, it can be concluded that silver-based AMCs are by far the most studied and used coatings followed by those based on titanium, copper, zinc, chitosan and quaternary ammonium compounds. The literature analysis pointed to biomedicine, followed by marine industry, construction industry (paints), food industry and textiles as the main fields of application of AMCs. The published data on ecotoxicological effects of AMCs was scarce, and also only a small number of the papers provided information on release of antimicrobial ingredients from AMCs. The available release data allowed to conclude that silver, copper and zinc are often released in substantial amounts (up to 100%) from the coatings to the aqueous environment. Chitosan and titanium were mostly not used as active released ingredients in AMCs, but rather as carriers for other release-based antimicrobial ingredients (e.g., conventional antibiotics). While minimizing the prevalence of healthcare-associated infections appeared to be the most prosperous field of AMCs application, the release of environmentally hazardous ingredients of AMCs into hospital wastewaters and thus, also the environmental risks associated with AMCs, comprise currently only a fraction of the release and risks of traditional disinfectants. However, being proactive, while the use of antimicrobial/antifouling coatings could currently pose ecotoxicological effects mainly in marine applications, the broad use of AMCs in other applications like medicine, food packaging and textiles should be postponed until reaching evidences on the (i) profound efficiency of these materials in controlling the spread of pathogenic microbes and (ii) safety of AMCs for the human and ecosystems.

Highlights

  • The undesirable growth oforganisms on solid surfaces, that is, biofouling or biocontamination of surfaces represents an important threat in diverse surface settings, for example, medical implants (Hetrick & Schoenfisch, 2006), water purification (Nguyen, Roddick & Fan, 2012) or food storage (Hannon et al, 2017)

  • The first successful attempts to control the biofouling by using biocidal surface coatings—mostly by slow controlled leaching of copper from copper compounds—date back to several centuries and were used in navy for painting the ship hulls to control the growth of algae and barnacles and subsequently to enhance the boat’s technical properties and reduce fuel consumption (Yebra, Kiil & Dam-Johansen, 2004; Martins et al, 2018)

  • Being a part of this COST Action network, we carried out a literature survey where we focused on antimicrobial coatings (AMCs) containing silver, titanium, copper, zinc, chitosan and QACs and paid special attention to the release of the active ingredients into the aqueous phase as a proxy of their potential to induce ecotoxicological effects

Read more

Summary

Introduction

The undesirable growth of (micro)organisms on solid surfaces, that is, biofouling or biocontamination of surfaces represents an important threat in diverse surface settings, for example, medical implants (Hetrick & Schoenfisch, 2006), water purification (Nguyen, Roddick & Fan, 2012) or food storage (Hannon et al, 2017).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.