Abstract
Antifouling paint particles (APPs) are residues generated during maintenance of vessels. In boat maintenance areas of South America, waste generation and disposal are not completely regulated. Therefore, APPs can enter into the aquatic environment and act as a source of contamination by metals and other biocides. Thus, the aim of the present study was to evaluate the potential ecotoxicity of the metal mixture present in APPs leached under different salinities. Therefore, the copepod Acartia tonsa was exposed to different concentrations of a leachate solution prepared by the addition of APPs (1.25g/L) in artificial saline water (salinities 5, 15 and 30). Thereafter, complexing agents (EDTA and sodium thiosulfate) were added to the experimental media in order to evaluate metal influence in APPs toxicity. APPs leachate solutions were very toxic to A. tonsa, reaching an estimated LC50 of 1% at salinities 5% and 15%, and 2% at salinity 30. The addition of the chelators in leachate solutions showed that metals are the major responsible compounds for the observed toxicity. Moreover, results from the calculated toxic units suggested a slightly synergic effect between Cu and Zn in the paint formulation. A metal speciation modelling showed that Zn was predominant as a free ion at all salinities, therefore, explaining the high leachate toxicity. Furthermore, the release of Zn was observed more at lower salinities, whereas Cu was observed at higher salinities. APPs are frequently released in estuarine systems, under conditions of salinity gradients. Therefore, navigated estuaries might be under the threat of this neglected residue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.