Abstract

ObjectivesThe glycoprotein sclerostin is mostly expressed in osteocytes and plays a central role in human bone metabolism. However, sclerostin and the corresponding SOST gene have been found in periodontal ligament cells under mineralizing conditions as well. The present study aimed to investigate, whether there was a correlation between endogenous SOST expression, the corresponding gene, and mineralization potential in human periodontal ligament cells and to identify different sclerostin expression and secretion patterns in cells derived from individual donors. Material and methodsPrimary human periodontal ligament cells of three different donors were cultivated under control or mineralizing conditions for 6, 13, 15 and 18 days, respectively. Calcium deposits were stained with alizarin red and quantified afterwards. Quantitative expression analysis of the SOST gene encoding sclerostin was performed using quantitative reverse transcription polymerase chain reaction (RT-PCR). Additionally, intracellular sclerostin expression was analyzed using Western blotting and extracellular sclerostin secretion was quantified using Enzyme-linked Immunosorbent Assay (ELISA). ResultsAlizarin red staining identified calcium deposits in periodontal ligament cells under mineralizing conditions beginning from day 13, relative SOST expression occurred on day 6. Whereas staining continued to increase in donor 1 on day 15, it remained stable in donors 2 and 3. Conversely, baseline SOST expression was significantly lower in donor 1 compared to donors 2 and 3. Western blotting and ELISA revealed increased intra- and extracellular sclerostin expression at day 13 under mineralizing conditions. Donor 3 exhibited the highest overall sclerostin levels. ConclusionsOur data emphasize donor-specific characteristics in differentiation potential and sclerostin expression patterns in primary human periodontal ligament cells. Sclerostin might play a central role in modulating osteogenic differentiation in periodontal ligament cells as part of a negative feedback mechanism in avoiding excessive mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.