Abstract

A theory is developed for the potential distribution around a charged spherical colloidal particle carrying ionized groups on the particle surface in a medium containing its counterions (i.e., counterions produced from dissociation of the particle surface groups) and a small amount of added salts on the basis of the theory of Imai and Oosawa. Numerical solutions to the Poisson–Boltzmann equation for the potential distribution are obtained for the case of dilute (but not infinitely dilute) particle suspensions of volume fraction φ≪1 for κa≪1 (where κ is the Debye–Huckel parameter and a is the particle radius). Here we have taken into account the effects of (i) counterions from the particle surface groups, and (ii) the finite particle volume fraction. These effects, which are usually neglected in the conventional Poisson–Boltzmann equation, are found to be important. It is found that, as in the case of completely salt-free media, there is a certain critical value of the particle charge (which is the same as that for the completely salt-free case). When the particle charge is lower than the critical value, the potential is given by a Coulomb potential. If the particle charge is higher than the critical value, then counterions are accumulated in the vicinity of the particle surface (counterion condensation) and the potential becomes less dependent on the particle charge. The above behaviors can be observed even for the case where the electrolyte concentration is higher than the concentration of counterions from the particle surface groups, if the conditions φ≪1 and κa≪1are both satisfied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call