Abstract
COVID-19 is a highly communicable respiratory illness caused by the novel coronavirus SARS-CoV-2, which has had a significant impact on global public health and the economy. Detecting COVID-19 patients during a pandemic with limited medical facilities can be challenging, resulting in errors and further complications. Therefore, this study aims to develop deep learning models to facilitate automated diagnosis of COVID-19 from CT scan records of patients. The study also introduced COVID-MAH-CT, a new dataset that contains 4442 CT scan images from 133 COVID-19 patients, as well as 133 CT scan 3D volumes. We proposed and evaluated six different transfer learning models for slide-level analysis that are responsible for detecting COVID-19 in multi-slice spiral CT. Additionally, multi-head attention squeeze and excitation residual (MASERes) neural network, a novel 3D deep model was developed for patient-level analysis, which analyzes all the CT slides of a given patient as a whole and can accurately diagnose COVID-19. The codes and dataset developed in this study are available at https://github.com/alrzsdgh/COVID. The proposed transfer learning models for slide-level analysis were able to detect COVID-19 CT slides with an accuracy of more than 99%, while MASERes was able to detect COVID-19 patients from 3D CT volumes with an accuracy of 100%. These achievements demonstrate that the proposed models in this study can be useful for automatically detecting COVID-19 in both slide-level and patient-level from patients’ CT scan records, and can be applied for real-world utilization, particularly in diagnosing COVID-19 cases in areas with limited medical facilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.