Abstract

The uptake of D-glucose by renal brush border membrane vesicles was studied in the absence of Na+. Uptake of the sugar was membrane potential dependent (inside negative), inhibited by phlorizin, sugar and stereospecific, accelerated by exchange diffusion, saturable, and temperature dependent. The binding of phlorizin in the absence of Na+ was also increased by a membrane potential (inside negative). Thus, the properties of this membrane potential-dependent, Na+-independent sugar transport system resembled those described for the Na+-D-glucose cotransport system. In the absence of Na+ but in the presence of a valinomycin-induced K+ diffusion potential the apparent Km for D-glucose was 43 mM. This contrasted with an apparent Km of 1.8 mM for the Na+ chemical gradient system. Therefore, the Na+-independent uptake system represented a low-affinity transport mechanism. It is suggested that the same carrier mediated the Na+-independent and Na+-dependent transport systems. A hypothetical model for the membrane potential-dependent stimulation of D-glucose uptake in the absence of Na+ is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.